
Heat Transfer. 2021;50:4788–4805.wileyonlinelibrary.com/journal/htj4788 | © 2021 Wiley Periodicals LLC

Received: 3 December 2020 | Revised: 18 January 2021 | Accepted: 13 February 2021

DOI: 10.1002/htj.22102

RE S EARCH ART I C L E

The effect of Joule heating and viscous
dissipation on the boundary layer flow of a
magnetohydrodynamics
micropolar‐nanofluid over a stretching
vertical Riga plate

Nabil T. Eldabe1 | Mahmoud E. Gabr2 | Abdullah Z. Zaher3 |

Sameh A. Zaher2

1Department of Mathematics, Faculty of
Education, Ain Shams University,
Cairo, Egypt
2Department of Mathematics, Faculty of
Science, Zagazig University,
Zagazig, Egypt
3Department of Engineering
Mathematics and Physics, Faculty of
Engineering, Shubra‐Benha University,
Banha, Egypt

Correspondence
Sameh A. Zaher, Department of
Mathematics, Faculty of Science, Zagazig
University, 44519 Zagazig, Egypt.
Email: samehabdelzaher419@yahoo.com

Abstract

Joule heating and viscous dissipation effects on the be-

havior of the boundary layer flow of a micropolar na-

nofluid over a stretching vertical Riga plate (electro

magnetize plate) are considered. The flow is disturbed by

an external electric magnetic field. The problem is for-

mulated mathematically by nonlinear system of partial

differential equations (PDEs). By using suitable variables

transformations, this system is transformed onto a sys-

tem of nonlinear ordinary differential equations (ODEs).

The Parametric NDsolve package of the commercial

software Mathematica is used to solve the obtained

ODEs as well as the considered numerical results for

different physical parameters with appropriate boundary

conditions. Novel results are obtained by studying the

stream lines flow around the plate in two and three di-

mensions. Moreover, the effects of the pertinent para-

meters on the skin friction coefficient, couple stress, local

Nusselt, and Sherwood number are discussed. Special

cases of the obtained results show excellent agreements

with previous works. The results showed that as the

magnetic field parameter increases the velocity of the

boundary layer adjacent to the stretching sheet

mailto:samehabdelzaher419@yahoo.com


decreases. Also, for a productive chemical reaction near

the sheet surface, the angular velocity decreases but

opposite trend is observed far from the sheet surface. The

importance of this study comes from its significant ap-

plications in many scientific fields, such as nuclear re-

actors, industry, medicine, and geophysics.
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1 | INTRODUCTION

The importance of studying nanofluids behavior under the effect of different external forces
comes from its wide applications in different engineering industries. Nanofluids have different
physical and chemical properties depending on its nanoparticles. In some specific fluids, the
suspension of nanosized particles improve significantly fluid properties, such as thermal con-
ductivity, thermal diffusivity, viscosity, and heat transfer convective. The term Nanofluid refers
to Choi1 and Choi et al.2 they proved that when small amounts of nanoparticles added to the
base fluid increases the fluid thermal conductivity to at least twice time its thermal prosperity.
Nanoparticles such as aluminum, copper, iron, and titanium when added to a nanofluid change
its physical and chemical properties differently, especially the thermal conductivity of these
substances.

In the last few decades, many scientists devoted their attention to study the nanofluid's
thermal properties, assuming different external fields. Recently, Reddy et al.3 analyzed the
effect of Prandtl non‐Newtonian nanofluid on Zero‐mass flux and Cattaneo–Christov heat flux
through a Darcy–Forchheimer porous space. They found that for larger thermophoretic force
constraint and Brownian movement factor the thermal field is boosted. Also, improving the
thermophoretic and Brownian movement parametric values leads to higher profile of Prandtl
nanofluid temperature. Shehzad et al.4 utilized the Catano–Christov double diffusion theories
to study fluid motion caused by a rotating stretched disk. Reddy et al.5 presented numerical
study to investigate the impact of magnetic field and Ohmic heating on the flow of a viscous
dissipative nanofluid with heat transfer, in the presence of porous medium, through a non-
linearly stretching sheet.

Because of the recent revaluation in engineering industries as well as the development of
many classical fluids into nanofluids, the need for scientists and engineers to study the mi-
crostructures of these fluids is now a huge challenge. The theory of Eringen is commonly used
to study these kinds of fluids, where the deformation of the fluid rigid bodies is included.
Examples of such fluids are polymeric suspensions, biological fluids, liquid crystals with stiff
molecules, muddy fluids, and nemotogenic and semectogenic liquids crystals. These fluids are
models of fluids that contain small, randomly oriented particles, suspended in a viscous
medium. These rigid particles' motion consists of both translational and rotational motion.
Often, spin inertia determines the stress moments and body pairs, in addition the stress tensor
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is not symmetric. This is a good mathematical model for many natural and industrial fluids,
such as blood flow, lubricants, turbulent shear flows, and flow in capillaries, and micro‐
channels.

Eringen6,7 developed the concept of micropolar fluids by studying the effects of microrotation of
the fluid microstructures. Arafa and Gorla8 performed a study for buoyancy and curvature con-
vection in micropolar fluids flow through vertical cylinders with needles and concluded that the
fluid microrotation is significantly enhanced when considering nonhomogeneous boundary con-
ditions. Nadeem et al.9 investigated the same problem by considering the flow of a micropolar
nanofluid in a moving cylinder with finite radius and concluded that increasing the micropolar
parameter value the velocity, angular velocity, and surface temperature are also increase. Bourantas
and Loukopoulos10 presented a natural convection study of a micropolar nanofluid (Al2O3) along a
rectangular inclined enclosure. The mixed convection flow of a micropolar nanofluid near a
stagnation point past a vertical stretch sheet was discussed by Noor et al.11 Rehman and Nadeem12

indicated that the pertinence of the boundary layer theory to the hybrid convection flow of mi-
cropolar nanofluid in a vertical slender cylinder. It was shown that as the micropolar parameter
increases the velocity and temperature of the fluid at the boundary decrease. Ram Reddy et al.13

investigated the solution of similarity for stable free flow of micropolar fluids convections through a
convective boundary vertical surface.

Besides its significant effects on conductivity structure and dynamics of micropolar fluids,
magnetic field also disturbs the fluid flow. These effects are due to the induced Lorentz force as
a result of magnetic flux changes. Many engineering applications considered Lorentz force,
where magnetohydrodynamic (MHD) flows are encountered such as Fridge, nuclear reactors,
and MHD accelerators. The mathematical formulation of these kinds of flow is very compli-
cated due to the additional MHD equations. Besthapu et al.14 addressed the impact of thermally
stratified nanofluid by considering the impact of buoyancy on a spongy stretching surface.
Ramzan et al.15 determined the optimal solution of Maxwell nanofluid flow problem. For more
important and significant results for the effect of nanoparticles and how it improves the
thermal conductivity of nanofluids see also References [16‐21].

The main goal of this paper is to study the electrically conducting micropolar nanofluid on
steady electromagnetohydrodynamic (EMHD)‐free convection and mass transfer flow over a
stretching vertical Riga plate (electro magnetize plate). After using special similarity trans-
formation, the governing equations of the problem transformed into an ordinary coupled
system of nonlinear ordinary differential equations. With the help of the Parametric NDsolve
package of the commercial software Mathematica, this system is solved numerically. Important
numerical results for different physical parameters with appropriate boundary conditions are
obtained. Two‐ and three‐dimension representations for the stream lines around the plate is
introduced with physical explanations as well as the others obtained results.

2 | FORMULATION OF THE PROBLEM

Consider a two‐dimensional steady flow of an incompressible micropolar nanofluid over a
linearly stretching vertical Riga plate. The flow is disturbed by a uniform magnetic field,
B B
¯
= (0, , 0)O acting normally on the flow direction for small magnetic Reynolds number.

Moreover, the fluid is electrically conducting by an electric field E E
¯
= (0, 0, − )0 , and both the

magnetic and electric fields obeying Ohm's law J σ E V B
¯
= (

¯
+
¯
×
¯
), where J

¯
, σ , and V

¯
are the

Joule current, the electrical conductivity, and the velocity filed, respectively. When considering
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small magnetic Reynolds number, the induced magnetic field may be ignored. The governing
equations of the fluid boundary layer flow of the considered problem are the continuity
equation, the momentum equation, the angular momentum equation, the energy equation, and
the concentration equation. Also, the laws of Maxwell and Ohm should be considered during
this formulation.

Using Buongiorno's model,22,23 the governing equations can be written as
The continuity equation:

∇ ⃗V· = 0. (1)

The momentum equation:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∂ ⃗

∂
⃗ ∇ ⃗ ∇ ∇ ⃗ ∇ ⃗ ⃗ ⃗ ⃗

⃗

∞

∞

ρ
V

t
V V P k N μ k V J B F β T T

β C C g

+ ( · ) = − + ( × ) + ( + ) + × + + { ( − )

+ ( − )} .

f T

C

1 1
2

(2)

The angular momentum equation:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∂ ⃗

∂
⃗ ∇ ⃗ ⃗ ∇ ⃗ ∇ ∇ ⃗ ∇ ∇ ⃗ρ j
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t
V N k N k V γ N α β γ N+ ( . ) = −2 + ( × ) − ( × ( × )) + ( + + ) ( . ).f 1 1

⁎ ⁎ ⁎ ⁎

(3)

The energy equation:
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(4)
The concentration equation:

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

∂

∂
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2 2 (5)

3 | BASIC EQUATIONS

Choose the Cartesian coordinate x y z( , , ) and let the plan y = 0 represents the infinite
stretching sheet. Let u x y( , ) and v x y( , ) be the components of the velocity field (Figure 1). Based
on the standard boundary layer approximation, the two‐dimensional EMHD boundary layer
flow equations for the considered incompressible micropolar nanofluid are:

The continuity equation:

∂

∂

∂

∂

u

x

v

y
+ = 0. (6)

The momentum equation:
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8
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f f f
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o o
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(7)
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The angular momentum equation:

⎛
⎝⎜

⎞
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The energy equation:
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The concentration equation:

⎛
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where, k1 is the vortex viscosity coefficient, N⁎ is the component of the microrotation vector N⃗
normal to the x and y‐axes, and j is the micro inertia density.

The spin gradient γ ⁎ can be defined as

FIGURE 1 Physical configuration of the geometry [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Comparison of angular velocity distribution with Hsiao26 [Color figure can be viewed at
wileyonlinelibrary.com]
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⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠γ μ

k
j μ

K
j= +

2
= 1 +

2
,⁎ 1 (11)

where K =
k

μ
1 is the material parameter, j =

υ

c

f is the micro inertia constant.
The boundary conditions are as follows:

∂

∂
→ ∞

→ → → → →∞ ∞ ∞

y v v u U x cx N n
u

y
T T C C N N y u

N C C T T N N

= 0: = , = ( ) = , = − ; = , = , = , :

0, 0, , , ,

w w w w w
⁎

⁎ (12)

where, c is the surface stretching constant and vW its velocity.

4 | METHOD OF SOLUTION

To solve the system of partial differential Equations (7)–(10) subject to the boundary conditions
(12), we use the following similarity transformations24:

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∞

∞

∞

∞

ψ cυ xf η θ η
T T
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ϕ η

C C

C C
η y

c
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N c
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υ
xg η ,= ( ) ( ), ( ) =

−

−
, ( ) =

−

−
; = , = ( )

w w

1
2

1
2

1
2

(13)

where ψ x y( , ) is the stream function such that ∂

∂
u =

ψ

y
and ∂

∂
v = −

ψ

x
.

The transformation (13) identically satisfies the continuity equation.

FIGURE 3 The variation of magnetic field on f η ϕ η g η θ η′( ), ( ), ( ), and ( ) [Color figure can be viewed at
wileyonlinelibrary.com]
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Introducing this transformation into the governing Equations (6‐10) and the boundary
conditions (12), we obtain the following nonlinear coupled system of ordinary differential
equations:

The momentum equation

K f η f η f η f η Qexp Aη Kg η M E f η

λ θ η Nϕ η

(1 + ) ‴( ) + ( ) ′′( ) − ( ′( )) + (− ) + ′( ) + ( − ′( ))

+ ( ( ) + ( )) = 0.

2
1

(14)

The angular momentum equation

⎜ ⎟
⎛
⎝

⎞
⎠

K
g η f η g η f η g η K g η f η1 +

2
′′( ) + ( ) ′( ) − ′( ) ( ) − (2 ( ) + ′′( )) = 0. (15)

FIGURE 4 The variation of material parameter K on f η ϕ η g η θ η′( ), ( ), ( ), and ( ) [Color figure can be
viewed at wileyonlinelibrary.com]
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The energy equation

p
θ η f η θ η N θ η ϕ η N θ η E K f η

ME f η E

1
′′( ) + ( ) ′( ) + ′( ) ′( ) + ′( ) + (1 + )( ′′( ))

+ ( ′( ) − ) = 0.

r

b t c

c

2 2

1
2 (16)

The concentration equation

ϕ η
N

N
θ η L f η ϕ η L γϕ η′′( ) + ′′( ) + ( ) ′( ) + ( ) = 0.t

b
e e (17)

The boundary conditions:

→ → → → → ∞

f s f g nf θ η

f η g η θ η η η

(0) = , ′(0) = 1, (0) = − ′′(0), (0) = 1, Φ(0) = 1, at = 0;

′( ) 0, ( ) 0, ( ) 0, Φ( ) 0: at . (18)

FIGURE 5 The variation of parameter of suction (s) on f η ϕ η g η θ η′( ), ( ), ( ), and ( ) [Color figure can be
viewed at wileyonlinelibrary.com]
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where, the dimensionless variables f θ g ϕ, , , and represent the velocity, temperature,
angular velocity (microrotation), and concentration, respectively.

The parameters are defined as follows:
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∞ ∞

∞

∞

M
σB

cρ
E

E

cxB
λ

G

R
G

Gβ T T x

υ
R

u x x

υ

Q
M j

c xρ
A

a

υ

c
G

Gβ C C x

υ
N

G

G
pr

υ

α

Nb
ρc D C C

ρc υ
Nt

ρc D T T

T ρc υ
Le

υ

D
γ

k

c

E
u

c T T

= , = , = , =
( − )

, =
( )

,

=
п

8
, =

п
, =

( − )
, = , = ,

=
( ) ( − )

( )
, =

( ) ( − )

( )
, = , = ,

=
( − )

.

O

f

rx

ex
rx

T W

ex

w

o o

f

rx
c W rx

rx

p B w

f

p T w

f B

c
w

p w

2

1
0

0
2

3

2

2
⁎

3

2

⁎

0

2

FIGURE 6 The variation of boundary parameter on f η ϕ η g η θ η′( ), ( ), ( ), and ( ) [Color figure can be
viewed at wileyonlinelibrary.com]
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The mathematical formulas of the Nusselt number Nu( ), Sherwood number Sh( ), couple
stress at the surface M( )w , and skin friction coefficient (cf ) are

⎛
⎝⎜

⎞
⎠⎟

∂

∂∞ ∞

Nu
xq

k T T
sh

xq

D C C
M γ

N
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ρ u x
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( − )
, =

( − )
, = , =

( )
.w

f w

m

B W
w

y

fx
w

f w

⁎
⁎

=0
2

(19)

The wall heat and mass flux qw and qm and the wall shear stress τw are

⎛
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Inserting Equation (14) in (15) we obtain:

⎜ ⎟
⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦

θ
R

Nu
R

Sh M uu
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ex
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(21)

where R =ex
ux

υ
is the local Reynolds number.

FIGURE 7 The variation of mixed convection parameter λ f η ϕ η g η θ ηon ′( ), ( ), ( ), and ( ) [Color figure
can be viewed at wileyonlinelibrary.com]
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5 | RESULTS AND DISCUSSION

In the present work, the electrically conducting micropolar nanofluid MHD with heat and mass
transfer flow over a stretching vertical Riga plate is investigated, as well as the viscous dis-
persion, Ohmic heating, and chemical reaction. The Parametric NDsolve package of the
commercial software Mathematica is used to obtain the numerical solution of the problem
nondimensional system of ordinary differential equations with suitable boundary conditions.

FIGURE 8 The variation of chemical reaction parameter γ on f η ϕ η g η′( ), ( ), and ( ) [Color figure can be
viewed at wileyonlinelibrary.com]

Tables 1 and 2 contain comparison between the results of the present problem and previous
works. Complete agreement is proved with the works of Eldabe et al.25 and Hsiao26 (Eldabe
et al. chose Pr Ec Le Nt Nb γ n s Q λ E N= 0.71, = 0.02, = 0.2, = = = = = = = = = 01 and
Hsiao chose M Nt Nb Pr Ec Le γ n s Q= 0.05, = = 0.1, = 0.71, = 0.02, = 0.2, = = = =

λ E N= = = 01 ). Table 3 shows the results of some physical values, such as skin friction
coefficient, couple stress, local Nusselt, and Sherwood number for larger values of K λ Pr, , , and
E1. As a result of this, we conclude that couple stress g′(0) and local Nusselt number −θ′(0)
increased, while skin friction coefficient and Sherwood number decreased. The main results of
the present work are given in Figures 3‐11.
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The numerical results for material parameter on angular velocity distribution are presented
in Figure 2 in the case of (M Nt Nb Pr Ec Le= 0.05, = = 0.1, = 0.71, = 0.02, = 0.2,

γ n s Q λ E N= = = = = = = 01 ) as a comparison with Hsiao.26

Figure 3 demonstrate the behavior of the velocity f η′( ), angular velocity g η( ), temperature
θ η( ), and concentration ϕ η( ) for certain values of the magnetic field parameterM. As a result of
the induced Lorentz force, increasing the magnetic field increases θ η( ), and decreases
f η ϕ η η′( ), ( ), and ( ). The behavior of f η ϕ η g η θ η′( ), ( ), ( ), and ( )are shown in Figure 4
under the effect of material parameter K. It is shown that with increasing material parameter
K f η g η′( ) and ( ), increases but θ η( ) decreases. Figure 4 indicates the effect of the material
number K. We noticed that increasing the material parameter rapidly increases the angular
velocity. The momentum of the flow field can be increased by the obtained material force. On
the other hand, the physical processes of temperature have the opposite effects.

Figure 5 displays the effects of suction and injection parameter (s) on the velocity f η′( ),
concentration ϕ η( ), and temperature profiles θ η( ). These variables decrease with the increase
of suction and injection parameter. The increases in the viscous force is due to the resistance
force caused by the diffusion of the heated fluid through the plate.

FIGURE 9 The variation of modified Hartman number Q on f η g η θ η′( ), ( ), and ( ) [Color figure can be
viewed at wileyonlinelibrary.com]
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In Figure 6, we present a comparison study between Newtonian fluid and micropolar fluid
(which is considered in non‐Newtonian fluid) under the effect of boundary parameter. For a
Newtonian fluid, choose K = 0 in Equation (9). The study showed that, significant increases in
the micropolar fluid velocity as well as its microrotation but decreases its concentration.

Figure 7 displays the behavior of mixed convection parameter λ on the fluid velocity f η′( )

and microrotation profiles g η( ). We notice that increasing the mixed convection parameter λ
increases the fluid velocity and microrotation profiles. For large values of λ, the temperature
θ η( ) and concentration ϕ η( ) decrease. This is because the amount of local Grashof number Grx
reflects the buoyancy to viscous force ratio. Any increase in Grx obviously contributes to an

FIGURE 10 Streamlines for E = 1.51 [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Streamlines for E1 = 0.5 [Color figure can be viewed at wileyonlinelibrary.com]
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increment in the thickness of the momentum‐boundary layer, while the thickness of the
thermal layer decreases.

Figure 8 displays the impact of a chemical reaction parameter γ on fluid velocity, micro-
rotation velocity, and concentration behavior. In the case of productive chemical reaction γ≻ 0,
the concentration behavior of the fluid increases, while an opposite effect is observed when

TABLE 1 Comparison of the couple stress at the surface g′(0) and the skin friction coefficient f− ″ (0) versus
K and M of the present study with that of Eldabe et al.25 and Hsiao26

g′(0) −f″(0)
M K Ref. [25] Ref. [26] Present Ref. [25] Ref. [26] Present

0.0 0.2 0.0950 0.0950 0.0950 0.9098 0.9098 0.9098

0.5 0.2 0.1051 0.1051 0.1051 1.1148 1.1147 1.1144

1.0 0.2 0.1121 0.1121 0.1121 1.2871 1.2871 1.2871

1.0 0.0 0 0 0 1.4142 1.4142 1.4142

1.0 0.5 0.2112 0.2112 0.2111 1.1407 1.1408 1.1408

TABLE 2 Shows comparison of the Nusselt number −θ′(0) and the Sherwood number −φ(0) versus Mand
K of the present study with that of Eldabe et al.25 and Hsiao26

θ− ′(0) ϕ− ′(0)

M K Ref. [25] Ref. [26] Present Ref. [25] Ref. [26] Present

0.0 0.2 0.4688 0.4889 0.4758 0.2149 0.2035 0.2035

0.5 0.2 0.4250 0.4476 0.4375 0.1972 0.1875 0.1875

1.0 0.2 0.3913 0.4159 0.4086 0.1857 0.1770 0.1770

1.0 0.0 0.3734 0.3950 0.3858 0.1790 0.1711 0.1711

1.0 0.5 0.4119 0.4407 0.4267 0.1938 0.1844 0.1844

TABLE 3 The numerical values of f g θ ϕ K Pr E λ− ′′(0), ′(0), − ′(0) and − ′(0) versus , , ,1

Ec n S N M= 0.002, = 0.05, = 0.1, = 5, = 0.01,

Nt Nb A Q γ Le= = = = = 0.1, = 0.2

K Pr λ E1 f− ″ (0) g′(0) θ− ′(0) ϕ− ′(0)

0.0 0.2 0.1 0.5 0.5594860 −0.033163 0.31024 0.1659560

0.1 0.3 0.2 0.6 0.1214710 0.0169380 0.40351 0.0992429

0.2 0.5 0.3 0.7 0.1127490 0.0523815 0.49645 −0.047869

0.3 0.5 0.4 0.8 −0.574919 0.0482891 0.59473 −0.035140

0.4 0.6 0.5 0.9 −0.857265 0.0440114 0.67989 −0.092814

0.5 0.7 0.6 1.0 −1.10 7380 0.0315765 0.75760 −0.145082
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≺γ 0. Moreover, for γ≻ 0 the angular velocity decreases but the velocity of the nanofluid
increase.

Figure 9 shows the effect of modified Hartman number on velocity, angular velocity, and
temperature profile. We notice that, increasing the Hartman number values decreases the fluid
temperature and microrotation while increase its velocity. This behavior because the Hartman
number amplifies the effect of the external and internal forces induced by the applied electric
filed.

Figures 10‐11 present the flow stream lines in three and two dimensions for different values
of the electric field strength. The results showed that the stream lines are concentrated near the
stagnation point x = 0 when increasing the electric field. While when decreasing the electric
field strength the stream lines diverge.

6 | CONCLUSION REMARKS

According to the above results we conclude that:

The velocity of the boundary layer adjacent to the stretching sheet decreases as the magnetic
field parameter increases, but the opposite effect happens for the temperature.

For ≻γ 0, the productive chemical reaction increases the fluid concentration, while an
opposite effect is observed when ≺γ 0.

For a productive chemical reaction near the sheet surface, the angular velocity decreases but
opposite trend is observed far from the sheet surface.

Due to the increase of the mixed convection parameter λ the surface cooling phenomena
occurs. This phenomenon occurs as a result of the increases of the fluid velocity, because
of the higher value of buoyancy force, and the decreases in the boundary layer thickness.

7 | APPLICATIONS

The present study has very important applications in petroleum engineering, rheology, nuclear
reactors, medical fields, and geophysics. Moreover, these results could be used for human blood
flow, especially in the case of human cancer treatments.

NOMENCLATURE
V
¯

fluid velocity
J
¯

Joule current
n boundary parameter
E
¯

electric field
B
¯

magnetic field
τ1 the ratio among the efficient heat transfer capacity of the nanoparticles and the fluid

heat capacity
μ kinematic viscosity
ρp particles density
ρf fluid density
σ electric conducting
Nb Brownian motion parameter
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kr thermal conductivity
ρc( )f p, fluid and nanoparticle material of the heat capacity
DB Brownian diffusion coefficient
DT thermophoretic coefficient
c surface stretching constant

∞T local temperature
Co initial concentration
j micro inertia density
Grx local Grashof number
G rx
⁎ Grashof number due to concentration
λ mixed convection parameter
jo the applied current density in the electrodes
N the ratio of thermal to concentration buoyancy forces
Q modified Hartman number
C concentration of nanoparticles
⃗τ shear stress tensor
⃗F force density

s suction/injection parameter
γ α β, ,⁎ ⁎ ⁎ spin gradient viscosity coefficient
pr Prandtl number
u, v fluid velocity and the normal velocity components in the x and y orientations
Ec Eckert number
M Hartmann number
E1 electric field parameter
Rex local Reynolds number
Nt thermophoresis parameter
α the thermal diffusivity
K material parameter
βT , βC thermal and mass diffusions coefficients
g gravity
Nb Brownian motion parameter
Pr Prandtl number
Le Lewis number
γ chemical reactions parameter
N⁎ component of the microrotation
k1 vortex viscosity coefficient
υ kinematic viscosity
Mo the magnetization of the permanent magnets
T0 initial temperature
A dimensionless parameter
a width for magnets and electrode
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